
Exact State Set Representations in the
Verification of Linear Hybrid Systems

with Large Discrete State Space�

Werner Damm2,3, Stefan Disch1, Hardi Hungar3, Swen Jacobs4, Jun Pang2,
Florian Pigorsch1, Christoph Scholl1, Uwe Waldmann4, and Boris Wirtz2

1 Albert-Ludwigs-Universität Freiburg
Georges-Köhler-Allee 51, 79110 Freiburg, Germany

2 Carl von Ossietzky Universität Oldenburg
Ammerländer Heerstraße 114-118, 26111 Oldenburg, Germany

3 OFFIS e.V., Escherweg 2, 26121 Oldenburg, Germany
4 Max-Planck-Institut für Informatik

Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany

Abstract. We propose algorithms significantly extending the limits for
maintaining exact representations in the verification of linear hybrid
systems with large discrete state spaces. We use AND-Inverter Graphs
(AIGs) extended with linear constraints (LinAIGs) as symbolic represen-
tation of the hybrid state space, and show how methods for maintaining
compactness of AIGs can be lifted to support model-checking of linear
hybrid systems with large discrete state spaces. This builds on a novel
approach for eliminating sets of redundant constraints in such rich hy-
brid state representations by a suitable exploitation of the capabilities of
SMT solvers, which is of independent value beyond the application con-
text studied in this paper. We used a benchmark derived from an Airbus
flap control system (containing 220 discrete states) to demonstrate the
relevance of the approach.

1 Introduction

We target the verification of safety properties for embedded control applications
in the transportation domain. Typical for such applications is a ratio of between
1:5 to 1:10 between the core control algorithms and diagnostic and fault-tolerance
measures integrated into the controller, leading to a blow up of the discrete state
space against pure control applications often reaching some 106 discrete states.
As an example, we analyze a model derived from an Airbus flap controller [13],
which on top of its control-loop for flap extraction and retraction is performing
envelope protection to prevent loads on flaps possibly causing physical ruptures,
and offers extensive monitoring of the health of its sub-systems to e. g. react on
� This work was partly supported by the German Research Council (DFG) as part

of the Transregional Collaborative Research Center “Automatic Verification and
Analysis of Complex Systems” (SFB/TR 14 AVACS, http://www.avacs.org/).

K.S. Namjoshi et al. (Eds.): ATVA 2007, LNCS 4762, pp. 425–440, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

426 W. Damm et al.

loss of hydraulic pressure, rupture of the transmission shaft, or hardware fail-
ures. To prove safety of such controllers, we must combine methods for analyzing
the pure control part (typically using linear dynamics for design models serving
as reference for subsequent implementation steps) with state-space exploration
methods dealing with large discrete state spaces. Such applications are out of
reach for existing hybrid verification tools such as CheckMate [26], PHAVer [11],
HyTech [15], d/dt [5]: while their strength rests in being able to address complex
dynamics, they do not scale in the discrete dimension, since modes – the only dis-
crete states considered – are represented explicitly when performing reachability
analysis. On the other hand, hardware verification tools such as SMV [20] and
VIS [27] scale to extremely large discrete systems, but clearly fail to be applica-
ble to systems with continuous dynamics. To achieve a compact representation
of such hybrid state-spaces, we enrich AND-Inverter Graphs (AIGs) with linear
constraints. Previous work [23] demonstrated advantages of AIGs over BDDs for
representing large discrete state-spaces compactly, due to their higher robust-
ness in handling broad classes of Boolean functions in exhaustive state-space
exploration. We lift methods such as test vector generation and SAT checking
to detect equivalent (and thus redundant) nodes to the LinAIG level, providing
a suite of heuristics including precise checks for equivalent LinAIG nodes using
the SMT solver HySAT [10]. Moreover, we provide efficient methods for detecting
and eliminating redundant linear constraints from LinAIGs, which are basically
arbitrary boolean combinations of boolean variables and linear constraints. This
extends results for eliminating redundant linear constraints from convex polyhe-
dra used by Wang [28] and Frehse [11]. Our approach can be applied to perform
backward reachability both for discrete time models (such as reference models
for embedded controller implementation) and linear hybrid automata enriched
with large discrete state spaces. In the latter case, we exploit the fact that the
number of modes of a single controller is typically small (in the order of tens of
modes) – this allows us to co-factor the LinAIG representation along modes. For
each mode, we use the Loos-Weispfenning quantifier elimination technique for
backward evaluation of the symbolic state-space representation along continu-
ous flows. We counteract a worst-case quadratic blow up of linear constraints by
tightly integrating redundancy elimination into the quantifier elimination pro-
cess. Jointly, the presented techniques allow to achieve preciseness while main-
taining sufficiently compact representations for the targeted application class.

This paper significantly extends our previous work [7] in adding quantifier
elimination and redundancy elimination. The introduction of quantifier elimina-
tion was originally motivated by the wish to reduce the diameter of discrete time
models. In allowing to fold the effect of large sequences of discretized flows into
a single substitution, we accelerate hybrid system verification. This is different
from the acceleration by folding hybrid control loops as in [6] which is performed
in the world of few discrete states.

The presented methods are orthogonal to and may in the future be combined
with abstraction techniques (such as bounding the degree of precision or loos-
ening constraints as in [11]), incorporating robustness [12,8] or slackness [1,2]

Exact State Set Representations 427

in models allowing precise abstractions by finite grids under robustness respec-
tively slackness assumptions, counter-example guided abstraction refinement as
in [24,17,25] and techniques such as hybridization [4] for approximate lineariza-
tion of richer dynamics.

The paper is organized as follows: Sections 2 and 3 give the formal mathemat-
ical model and present the backward-reachability algorithm. Sections 4 and 5 are
dedicated to flow extrapolation and redundancy elimination. Evaluation results
on the flap controller case study are presented in Section 6.

2 System Model

2.1 An Informal Description

This section elaborates on the characteristics of the systems to be analyzed, and
motivates particular choices incorporated in the formal definition given in the
following section. Our definition of hybrid systems can be seen as an extension
of linear hybrid automata (LHA) [14] with a set of discrete variables. The state
space is spanned by three classes of variables:

– Continuous variables represent sensor values, actuator values, plant states,
and other real-valued variables used for the modeling of control-laws and
plant dynamics.

– Mode variables represent a finite (small) set of modes, corresponding to the
discrete states of an LHA; each mode is uniquely associated with a constant
slope for each of the continuous variables, determining how the continuous
valuation evolves over time as long as the system is in the given mode.

– Discrete variables code states from state-machines, switches, counters, sanity
bits of sensor values, etc., and appear in modeling tools typically as bits,
range types, or integer sub-ranges. In this paper we will assume some Boolean
encoding of these variables. There are additional discrete input variables to
our system.

Our models are closed-loop models without continuous input variables, combin-
ing controller and its controlled plant, hence sensors and actuators are internal
continuous variables. Interactions of the environment are only possible through
discrete input variables, allowing e. g. to select set-points, and to react to pro-
tocol messages. Non-deterministic choices are also modeled using discrete input
variables. We remark that employing the construction from [3] permits us to
extend our procedure to cope with slope sets bounded by constants which allow
for non-determinism in plant dynamics, though we will not provide technical
details of this extension in this paper.

The system evolves in alternating between continuous flows, in which time
passes and only continuous variables are changed according to their slopes asso-
ciated with the currently active mode of the system, and sequences of discrete
transitions, which happen in zero time. Such discrete transitions update both
discrete and continuous variables, and finally select the next active mode. All

428 W. Damm et al.

(discrete) transitions are urgent, eliminating the need to associate state invari-
ants with modes, as in other models of hybrid systems. Discrete inputs enter
only in assignments to other discrete variables, i. e. they are disregarded during
continuous evolutions. To allow e. g. for periodic sampling of discrete inputs,
one can explicitly encode a (continuous) clock within one mode, and test for
expiration of the clock-cycle within a transition guard.

2.2 Formal Model

We assume disjoint sets of variables C, D and I. The elements of C are contin-
uous variables, which are interpreted over the reals R. The elements of D and I
are discrete variables, where I will be used for inputs. For simplicity, we assume
that they are of type boolean and range over the domain B = {0, 1}. In the same
way we assume that modes are encoded by a set M ⊆ {0, 1}l of boolean vectors
of some fixed length l, leading to a set M of l (boolean) mode variables. We
denote a valuation of (a subset of) these variables by (d, i, c,m).

A set of valuations (or states) can be represented symbolically using a suitable
(quantifier-free) logic formula over D∪I ∪C ∪M . We denote by B(D∪I) the set
of boolean expressions over D ∪ I and by B(M) the set of boolean expressions
over M . Here we restrict terms over C to the class of linear terms of the form∑

αici + α0 with rational constants αi and ci ∈ C. Predicates are given by the
set L(C) of linear constraints, they have the form t ∼ 0, where ∼ ∈ {=, <, ≤}
and t is a linear term. Finally, P(D, C) is the set of all boolean combinations of
variables from D and linear constraints over C.

In the following we use ξ for formulas in P(D, C), θ for boolean expressions
from B(M), g for boolean expressions from B(D ∪ I), t for linear terms over C,
and � for linear constraints over C.

Definition 1 (Syntax of CTHSs). A continuous-time hybrid system CTHS
contains six components:

– D = {d1, . . . , dn} is a finite set of discrete variables, I = {dn+1, . . . , dp},
(p ≥ n) is a finite set of discrete inputs.

– C = {c1, . . . , cf} is a finite set of continuous variables.
– M = {m1, . . . , ml} is a finite set of mode variables, M = {m1, . . . ,mk} ⊆

{0, 1}l is a finite set of modes, each value mi is associated with a vector
vi ∈ R

f of slopes for the variables in C.
– GC is a global constraint in the form ggc(D)∧

∧
i �i with linear constraints �i.

– Init is a set of initial states, given in the form of ξ0 ∧θ0, where ξ0 ∈ P(D, C)
and θ0 ∈ B(M).

– DTrs is the set of discrete transitions; each discrete transition is given as a
guarded assignment gai (i = 1, . . . , u and u ≥ 1) in the form

ξi ∧ θi → (d1, . . . , dn) := (gi,1, . . . , gi,n);
(c1, . . . , cf) := (ti,1, . . . , ti,f);
(m1, . . . , ml) := mji .

Exact State Set Representations 429

The typical usage of GC is to specify lower and upper bounds for continuous
variables in runs to be considered. For simplicity, we assume that discrete inputs
appear only on the right-hand side of assignments, but not in conditions.1

We add the following derived notions and restrictions to the CTHSs we
consider:

Definition 2 (Restrictions on CTHSs)

– The guards of the discrete transitions must be mutually exclusive, i. e. (ξi ∧
θi) ⇒ ¬(ξj ∧ θj) for i �= j.

– For each mode mi its boundary condition βi is given by the cofactor of the
disjunction of all discrete transition guards wrt. mi.2 The boundary condi-
tions have to form closed subsets of R

f for each valuation of variables in D.

Definition 3 (Semantics of CTHSs)

– A state of a CTHS is a valuation s = (d, c,m) of D, C and M .
– A discrete transition gai relates two states s →i s′ iff the guard ξi ∧ θi is

true in s and the values in s′ result from executing the assignments for some
valuation i of the input variables.

– A state s = (d, c,mi) evolves in time λ ∈ R>0 into s′ = (d, c + λvi,mi),
written as s �λ s′. s′ is a λ-time successor of s (s →λ s′), if s �λ s′ and
for all s′′ with s = s′′ or s �λ′′

s′′for some λ′′ < λ, we have s′′ |= GC
and s′′ �|= βi (i. e. neither we violate the global constraints nor hit a discrete
transition guard along the way).

– → =df
(⋃u

i=1 →i

)
∪

(⋃
λ>0 →λ

)
is the transition relation of the CTHS. A

trajectory is a finite or infinite sequence of states (sj)j≥0 with s0 ∈ Init , all
sj |= GC, and sj−1 → sj for each j > 0. A state is reachable if there is a
trajectory ending in that state.

Note that the definition of a time successor makes the discrete transitions urgent :
they fire once they become enabled. This explains why we do not need invariants
of modes while on the other hand we have to require closed sets for boundary
conditions.

3 Approach

In this section, we describe the main structure of our algorithm. We recall the
ingredients which it shares with its predecessor from [7] and point to the new
constituents which are detailed in the ensuing sections.

Overview. Our algorithm checks whether all reachable states are within a given
set of (safe) states S0. To establish this, a backwards fixpoint computation is
performed. Starting with the set S0 enriched by all states violating the global

1 The usual solution is to check discrete inputs only when a timer has expired.
2 The cofactor is the partial evaluation of the disjunction wrt. (m1, . . . , ml) = mi. It

does not depend on M anymore.

430 W. Damm et al.

constraints, repeatedly the (safe) pre-image is computed until a fixpoint is
reached or some initial state is removed from the fixpoint approximant. In the
latter case, a state outside of S0 is reachable (while observing the global con-
straints). So we employ repeatedly

Safepre(S) =df { s ∈ S | ∀s′. s → s′ ⇒ s′ ∈ S },

which corresponds to the temporal operator AX . We have chosen the backwards
direction, because for discrete transitions the pre-image is expressed essentially
by a substitution (see Hoare’s program logic [16]).

Step computation. We split the computation of Safepre into a discrete (SafepreD)
and a continuous (SafepreC) part. The computation of SafepreD using boolean
operations, substitutions (both for boolean and real variables), and boolean
quantification has been already described in [7]. We will explain our new method
to cope with continuous-time evolutions (which did not occur in the discrete-time
models of the precursor paper) in detail in Sect. 4.

Termination. Since the equivalence of state sets (we deal with boolean combina-
tions of linear constraints, as detailed in the following) is decidable, termination
of the algorithms enables us to answer the reachability question. However, it
should be noted that termination is not guaranteed – otherwise our algorithm
would constitute a solution to an undecidable problem3. We expect that the
algorithm terminates – in theory – for the great majority of problems coming
from applications. We consider complexity the much more relevant challenge in
practice. Let us also remark that the implemented fixpoint computation is more
elaborated in detail than the somewhat simplified version described here (due
to lack of space).

Representation of state sets. Our algorithm operates on a specific data structure
efficiently implementing formulas from P(D, C) ∪ B(M). These can be seen as
boolean combinations over D, M and linear constraints L(C). We use a set of new
(boolean) constraint variables Q as encodings for the linear constraints, where
each occurring � ∈ L(C) is encoded by some q� ∈ Q. An important characteristic
of our procedure is that the set of constraint variables may grow as the step
computation continues, so that new variables are introduced continuously.

For the boolean structure we employ Functionally Reduced AND-Inverter
Graphs (FRAIGs) [21,23]. These are a semi-canonical variant of AND-Inverter
Graphs (AIGs) [22,18]. Basically, they are boolean circuits consisting only of AND
gates and inverters. Semi-canonical means that no two nodes represent the same
boolean function. In the presence of atoms encoding linear constraints, we call
them linear constraint AIGs, or shortly LinAIGs. Their structure is illustrated in
Fig. 1.
3 Even if the global constraints define a bounded region, one can straightforwardly

encode arithmetic on integers represented as fractions 1/2n of continuous values. This
is a common integer representation used in the literature for showing undecidabilities
in related domains.

Exact State Set Representations 431

...

...

...

...

ql1 qlj

mapping between
linear constraints
and bool. variables

AIG

f1 fi Represented first order predicates

d1 dn
lin. constraints

cfc1
continuous domain variables

boolean domain variables

Fig. 1. The LinAIG structure

Efficiency measures. We have put much effort into the efficiency of our im-
plementation, in particular into the time efficiency of the routines which keep
the representations as small as possible. We briefly summarize some techniques
described in more detail in [7], while Sec. 5 presents important improvements.
Basically, functional reducedness (generalized from FRAIGs to LinAIGs) can be
achieved by checking all pairs of nodes for equivalence, taking the interpretation
of constraint variables q� by the corresponding linear constraints � into account.
This task can be performed by an SMT (SAT modulo theories) solver such as
HySAT [10], which combines DPLL with linear programming as a decision proce-
dure. However, it would be much too costly to call HySAT every time a new node
is introduced. Instead, a hierarchy of approximate techniques is used to factor
out “easy” problem instances. In first steps purely boolean approximations are
employed: If two nodes represent equivalent boolean formulas, we do not need to
refer to the definition of the constraint variables. Here we make use of capabilities
of FRAIGs, which include local boolean normalization rules, simulation, and SAT
checks. Additionally, boolean reasoning is supported by (approximate) knowl-
edge on linear constraints such as implications between constraints. For identi-
fying non-equivalent LinAIG nodes we use test vectors with valuations c ∈ R

f ,
and it proved to be worthwhile to use not only randomly generated test vectors,
but also test vectors extracted from failed exact checks done by HySAT (learning
test vectors). All of these techniques are arranged in a carefully designed and
tested strategy of when to apply which technique.

4 Flow Extrapolation

Continuous transitions. In our system model, the time steps only concern the
evolutions of continuous variables and leave the discrete part unchanged. For
each mode, the continuous safe pre-image SafepreC can be expressed as a formula
with one quantified real variable (time). We will show how to eliminate this
quantifier to arrive at a formula which can again be represented by a LinAIG.

Let φ(D, M, Q) be a representation of a state set. Each valuation mi of the
mode variables in M encodes a concrete mode with an associated evolution vi

of C and boundary condition βi. Let φi be the cofactor of φ w. r. t. mode mi.
Thus we have φ ⇔

∨k
i=1 φi ∧ (m1, . . . , ml) = mi, where each φi is a boolean

432 W. Damm et al.

formula over D and Q. For each mode mi, we must now determine the set of all
valuations for which every (arbitrarily long) evolution along vi remains in the set
of valuations satisfying φi, either forever or until it meets a point that satisfies
the boundary condition βi or violates the global constraints GC . We denote this
set by SafepreC(φi,vi, βi). Logically, it can be described by the formula

∀λ.
(
λ < 0 ∨ φi(c+λvi) ∨ ¬GC (c+λvi)

∨ ∃λ′. (λ′ ≥ 0 ∧ λ′ < λ ∧ (βi(c+λ′vi) ∨ ¬GC (c+λ′vi)))
)
.

Under the assumption that the set described by GC is convex, and using the
fact that we are only interested in states satisfying GC , this formula can be
simplified (modulo GC) to

∀λ.
(
λ < 0 ∨ φi(c+λvi) ∨ ¬GC (c+λvi) ∨ ∃λ′. (λ′ ≥ 0 ∧ λ′ < λ ∧ βi(c+λ′vi))

)
.

Our task is now to convert this formula over λ, λ′, C, and D into an equivalent
formula over the original variables in C and D. If the variables in C occur in φ
and β only within linear constraints, then this amounts to variable elimination
for linear real arithmetic.4

Test points. The Loos-Weispfenning test point method [19,9] eliminates univer-
sal quantifiers by converting them into finite conjunctions (and dually, existen-
tial quantifiers into finite disjunctions). The method is based on the following
observation: Assume that a formula ψ(x,
y) is written as a positive boolean
combination of linear constraints x ∼i ti(
y) and 0 ∼′

j t′j(
y), where ∼i, ∼′
j ∈

{=, �=, <, ≤, >, ≥}. Let us keep the values of
y fixed for a moment. If the set of
all x such that ψ(x,
y) does not hold is non-empty, then it can be written as a
finite union of (possibly unbounded) intervals, whose boundaries are among the
ti(
y). To check whether ∀x. ψ(x,
y) holds, it is therefore sufficient to test ψ(x,
y)
for either all upper or all lower boundaries of these intervals. The test values may
include +∞, −∞, or a positive infinitesimal ε, but these can easily be eliminated
from the substituted formula. For instance, if x is substituted by tj(
y) − ε, then
both the linear constraints x ≤ ti(
y) and x < ti(
y) are turned into tj(
y) ≤ ti(
y),
and both x ≥ ti(
y) and x > ti(
y) are turned into tj(
y) > ti(
y).

There are two possible sets of test points, depending on whether we consider
upper or lower boundaries:

TP1 = {+∞} ∪ { ti(
y) | ∼i ∈ {�=, >} } ∪ { ti(
y) − ε | ∼i ∈ {=, ≥} }
TP2 = {−∞} ∪ { ti(
y) | ∼i ∈ {�=, <} } ∪ { ti(
y) + ε | ∼i ∈ {=, ≤} }.

Let TP be the smaller one of the two sets and let T be the set of all symbolic
substitutions x/t for t ∈ TP . Then the formula ∀x. ψ(x,
y) can be replaced by an
equivalent finite conjunction

∧
σ∈T ψ(x,
y)σ. The size of TP is in general linear in

4 The variables in D are assumed to remain constant during mode mi, so boolean
expressions over D behave like propositional variables. For simplicity, we will ignore
them in the rest of this section.

Exact State Set Representations 433

the size of ψ, so the size of the resulting formula is quadratic in the size of ψ. This
is independent of the boolean structure of ψ – conversion to CNF is not required.
On the other hand, if ψ is a conjunction

∧
ψi, then the test point method can also

be applied to each of the formulas ψi individually, leading to a smaller number
of test points. Moreover, when the test point method transforms each ψi into a
finite conjunction

∧
ψj

i , then each ψj
i contains at most as many linear constraints

as the original ψi, and only the length of the outer conjunction increases.

Applying the test point method to flow extrapolation. We have demonstrated
above that the safe pre-image SafepreC(φi,vi, βi) of the formula φi is

∀λ.
(
λ < 0 ∨ φi(c+λvi) ∨ ¬GC (c+λvi) ∨ ∃λ′. (λ′ ≥ 0 ∧ λ′ < λ ∧ βi(c+λ′vi))

)
.

Assuming that φi equals
∧

k φik and that βi equals
∨

j βij , we obtain

∧
k ∀λ.

(
λ < 0 ∨ φ′

ik(c+λvi) ∨
∨

j ∃λ′. (λ′ ≥ 0 ∧ λ′ < λ ∧ βij(c+λ′vi))
)
.

where φ′
ik abbreviates φik ∨ ¬GC . Applying the test point method, we replace

the universal and the existential quantifier by a finite conjunction or disjunction
using a set of symbolic substitutions T ′

j for λ′ (which depends on βij and vi) and
a set of symbolic substitutions Tk for λ (which depends on φik, the βij , and vi):

SafepreC(φi,vi, βi) =
∧

k

∧
σ∈Tk

(
(λ < 0 ∨ φ′

ik(c + λvi))σ

∨
∨

j

∨
τ∈T ′

j
(λ′ ≥ 0 ∧ λ′ < λ ∧ βij(c + λ′vi))τσ

)
.

Note that the test point method can work directly on the internal formula
representation of LinAIGs – in contrast to the classic Fourier-Motzkin algorithm,
there is no need for a costly CNF or DNF conversion before eliminating quanti-
fiers. Moreover, the resulting formulas preserve most of the boolean structure of
the original ones: the method behaves largely like a generalized substitution.

Convexity. It should be noted that some of the complexity of the general case
disappears automatically if the complement of the boundary conditions is con-
vex, that is, if every βij is a single linear inequation. Consider the formula∨

τ∈T ′
j
(λ′ ≥ 0 ∧ λ′ < λ ∧ βij(c + λ′vi))τ . If βij is a single linear inequation, then

two test points are always sufficient:5 (a) If βij(c + λ′vi) has the form λ′ ≤ t(c)
or λ′ < t(c), then the test points are −∞ and 0, (b) otherwise, if βij(c + λ′vi)
has the form λ′ ≥ t(c) or λ′ > t(c), or if λ′ is cancelled out completely in
βij(c+λ′vi), then the test points are +∞ and λ− ε. Moreover, if +∞ or −∞ is
substituted for λ′, the conjunction becomes trivially false, so the whole formula
is reduced to 0 < λ∧βij(c) in case (a) and to λ > 0∧βij(c+(λ−ε)vi) in case (b).

5 Since we want to eliminate an existential quantifier, we have to use the dual form of
the method described above.

434 W. Damm et al.

5 Redundancy Elimination

Our earlier experiments demonstrated that LinAIGs form an efficient data struc-
ture for boolean combinations of boolean variables and linear constraints over
real variables [7]. However, in connection with flow extrapolation using Loos-
Weispfennig quantifier elimination, one observes that the number of “redun-
dant” linear constraints grows rapidly during the fixpoint iteration of the model
checker. For illustration see Fig. 2 and 3, which show a typical example from a
model checking run representing a small state set based on two real variables:
Lines in Figures 2 and 3 represent linear constraints, and the gray shaded area
represents the space defined by some boolean combination of these constraints.
While the representation depicted in Fig. 2 contains 24 linear constraints, a
closer analysis shows that an optimized representation can be found using only
15 linear constraints as depicted in Fig. 3.

Fig. 2. Before redundancy removal Fig. 3. After redundancy removal

Removing redundant constraints from our representations turned out to be
a crucial task for the success of our methods. It should be noted that, since
we represent arbitrary boolean combinations of linear constraints (and boolean
variables), this task is not as straightforward as for other approaches such as
[14,11] which represent sets of convex polyhedra, i. e., sets of conjunctions �1 ∧
. . .∧�n of linear constraints. If one is restricted to convex polyhedra, the question
whether a linear constraint �1 is redundant in the representation reduces to the
question whether �2 ∧ . . . ∧ �n represents the same polyhedron as �1 ∧ . . . ∧ �n, or
equivalently, whether �1 ∧ �2 ∧ . . . ∧ �n represents the empty set. This question
can simply be answered by a linear constraint solver.

For redundancy elimination in our context consider a predicate F (b1, . . . , bk,
�1, . . . , �n) (represented by a LinAIG) where b1, . . . , bk are boolean variables,
�1, . . . , �n are linear constraints over C, and F is a boolean function.

Definition 4 (Redundancy of linear constraints). The linear constraints
�1, . . . , �r (1 ≤ r ≤ n) are called redundant in the representation of F (b1, . . . , bk,
�1, . . . , �n) iff there is a boolean function G with the property that F (b1, . . . , bk, �1,
. . . , �n) and G(b1, . . . , bk, �r+1, . . . , �n) represent the same predicates.

In order to be able to check for redundancy, we need a disjoint copy C′ =
{c′1, . . . , c

′
f} of the continuous variables C = {c1, . . . , cf}. Moreover, for each

Exact State Set Representations 435

linear constraint �i (1 ≤ i ≤ n) we introduce a corresponding linear constraint
�′i which coincides with �i up to replacement of variables cj ∈ C by variables
c′j ∈ C′. Our check for redundancy is based on the following theorem:

Theorem 5 (Redundancy check). The linear constraints �1, . . . , �r (1 ≤ r ≤
n) are redundant in the representation of F (b1, . . . , bk, �1, . . . , �n) iff the predicate

F (b1, . . . , bk, �1, . . . , �n) ⊕ F (b1, . . . , bk, �′1, . . . , �′n) ∧
∧n

i=r+1(�i ≡ �′i) (1)

(where ⊕ denotes exclusive-or) is not satisfiable by any assignment of boolean
values to b1, . . . , bk and real values to the variables c1, . . . , cf , c′1, . . . , c

′
f .

Note that the check from Thm. 5 can be performed by an SMT solver such as
HySAT [10]. By lack of space we just give a sketch of the intuition behind Thm. 5.

According to Def. 4 linear constraints �1, . . . , �n are redundant iff there is a
boolean function G such that G(b1, . . . , bk, �r+1, . . . , �n) and F (b1, . . . , bk, �1, . . . ,
�n) represent the same predicates. Now let us look at F (b1, . . . , bk, �1, . . . , �n)
as a boolean function F (b1, . . . , bk, q�1 , . . . , q�n) with (new) boolean constraint
variables q�1 , . . . , q�n and a mapping connecting q�i to �i (just as in our definition
of LinAIGs). In comparison to F the required boolean function G must depend
only on variables b1, . . . , bk, q�r+1 , . . . , q�n .

If formula (1) is satisfied by some assignment d ∈ {0, 1}k to the boolean
variables b1, . . . , bk, c ∈ R

f to the real variables c1, . . . , cf (which are inputs of
linear constraints �i), and c′ ∈ R

f to the copied real variables c′1, . . . , c
′
f (which

are inputs of copied linear constraints �′i), then the first part of formula (1),
i. e. F (b1, . . . , bk, �1, . . . , �n)⊕F (b1, . . . , bk, �′1, . . . , �′n) enforces that the predicate
F changes its value if input c is replaced by input c′ in the corresponding linear
constraints. On the other hand, the second part

∧n
i=r+1(�i ≡ �′i) enforces that the

truth assignment to linear constraints �r+1, . . . , �n does not change when replac-
ing c by c′. However, since G only depends on variables b1, . . . , bk, q�r+1 , . . . , q�n

(whose truth assignments are not changed), function G “cannot see” the effect
of changing c to c′. Thus G is not able to change its value like F when replacing
c by c′ and therefore it is not able to represent the same predicate as F .

Conversely, it can be seen that an appropriate function G can be constructed,
when formula (1) is unsatisfiable. When constructing G, we use the notion of the
don’t care set DC induced by linear constraints �1, . . . , �n: This don’t care set
DC := {(vb1 , . . . vbk

, v�1 , . . . , v�n) | �(vc1 , . . . vcf
) ∈ R

f with �i(vc1 , . . . , vcf
) =

v�i∀1 ≤ i ≤ n} contains all boolean combinations that can not occur due to
inconsistent assignments to boolean constraint variables. While for all (d, c) ∈
DC := {0, 1}k+n \ DC we have to postulate G(d, c) = F (d, c), the value of G
may be chosen arbitrarily for all (d, c) ∈ DC, since these values can not occur
due to inconsistencies between linear constraints. A closer analysis shows that
– under assumption of unsatisfiability of formula (1) – it is indeed possible to
define the function values of G(d, c) for (d, c) ∈ DC in such a way that G will
not depend on variables q�1 , . . . , q�r . This proves that linear constraints �1, . . . , �r

are then redundant.
A straightforward realization of this approach would need a (compact) repre-

sentation of the don’t care set DC in order to compute an appropriate boolean

436 W. Damm et al.

function G. However, two interesting observations turn the basic idea into a
feasible approach:

1. In general, we do not need the complete set DC for the definition of the
boolean function G.

2. A representation of a subset of DC which is needed for removing the re-
dundant constraints �1, . . . , �r is already computed by an SMT solver when
checking satisfiability of formula (1).

Again, more details on how the SMT solver internally computes a representation
of a sufficient subset of DC and on the method for actually removing redundant
constraints from our representations are omitted due to lack of space. Our ideas
for redundancy detection and removal have been implemented based on the SMT
solver HySAT. Experiments given in Section 6 show that integrating redundancy
removal is crucial for the success of our methods.

6 Experimental Results

Our sample application is derived from a case study for Airbus, a controller for
the flaps of an aircraft [13]. The flaps are extended during take-off and land-
ing to generate more lift at low velocity. They are not robust enough for high
velocity, so they must be retracted for other periods. It is the controller’s task
to correct the pilot’s commands if he endangers the flaps. Additionally, there
is also an extensive monitoring of the health of its sub-systems, checking for
instance for hardware failures. The health monitoring system interacts with the
flap control by enforcing a more conservative behavior of the control when errors
are supposed to be in the system.

The benchmark used here is a simplified version of the full system including
the flap controller and a health monitoring system, which is triggered by a timer.
The model has three continuous variables: the velocity, the flap angle, and the
timer value. Discrete states of the controller and of the health monitoring system
contribute to the discrete state space. The discrete state space contains 220

discrete states. This size is clearly out of reach for hybrid verification tools known
from the literature, which do not scale in the discrete dimension, since modes –
the only discrete states considered – are represented explicitly when performing
reachability analysis.

The safety property to be established for our model is “For the current flap
setting, the aircraft’s velocity shall not exceed the nominal velocity (w. r. t. the
flap position) plus 7 knots”. Whether this requirement holds for our model de-
pends on a “race” between flap retraction and speed increase. The controller is
correct, if it initiates flap retraction (by correcting the pilot) early enough.

Based on the ideas presented in the previous sections we implemented a proto-
type model checker using LinAIGs for representing sets of states. Our experiments
were run on an AMD Opteron with 2.6 GHz and 16 GB RAM.

Our model checker was able to prove the given safety invariant for the case
study in 888.6 CPU seconds. The LinAIG representation had a maximum number

Exact State Set Representations 437

of 30887 nodes and a maximum number of 80 linear constraints. The number
of flow extrapolation steps using Loos-Weispfennig quantifier elimination was 6,
the number of discrete image computation steps performed until reaching the
fixpoint was 20. This result clearly demonstrates that our approach is able to
successfully verify hybrid systems including discrete parts with state spaces of
considerable sizes.

In the following we analyze how the individual ingredients of our method con-
tribute to its overall success. Redundancy elimination turned out to be absolutely
necessary to make flow extrapolation using Loos-Weispfennig quantifier elimina-
tion feasible. Fig. 4 illustrates the difference between the model checking runs for
our case study with and without redundancy removal by plotting the numbers
of linear constraints used during the model checking run. Without redundancy
removal (dotted line), the number of linear constraints is rapidly increasing up
to a number of 1000 linear constraints and 150000 LinAIG nodes in the fourth
flow extrapolation.6 On the other hand, redundancy elimination detects many
of the linear constraints to be redundant in our LinAIG representations. Having
a closer look at the solid line in Fig. 4 one can identify six groups of three peaks
in the number of linear constraints corresponding to six flow extrapolations for
three modes, respectively. One notices that redundancy elimination is able to
keep the numbers of linear constraints small after Loos-Weispfennig quantifier
elimination, so that the number of linear constraints does not exceed 80 during
the model checking run. Redundancy elimination removes redundant constraints
early and has thus the additional effect that the number of constraints does not
blow up due to a series of further substitutions into the removed constraints in
following flow extrapolation steps.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

lin
ea

r
co

ns
tr

ai
nt

s

intermediate model checking steps

with redundancy removal
without redundancy removal

Fig. 4. Comparision of the LinAIG evo-
lution with and without redundancy
removal

 0

 5

 10

 15

 20

 25

400 300 200 100
(original)

50
 0

 20

 40

 60

 80

 100

 120

 140

m
od

el
 c

he
ck

in
g

tim
e

(in
 1

00
0

s)

pe
ak

 n
um

be
r

of
 n

od
es

 (
in

 1
00

0)

step width (ms)

time
nodes

Fig. 5. Discrete time example with dif-
ferent time steps

Finally, we want to compare the results for our current system model, which
includes continuous evolution of variable length in one operation based on flow

6 Without redundancy removal the remaining two flow extrapolations could not be
performed within our timeout of 24 hours.

438 W. Damm et al.

extrapolation, to results for a corresponding model with discrete time semantics
as presented in [7]. The system model from [7] has no continuous evolution, and
discrete steps take fixed time δ. We emphasize that, although time discretized
models are widely used in practical applications, they have the problem that
unsafe states may be reachable from the initial state, but reachability of these
states is not observed due to the time discrete nature of steps. Reducing the
width of the discrete time steps can alleviate this problem, but it comes at the
cost of a larger number of steps for fixpoint iterations and a larger number of
LinAIG nodes for representing sets of states. Our continuous time approach does
not show this problem. An analysis of this issue (here done for a flap controller
without health monitoring system) is given in Fig. 5. It shows the peak numbers
of LinAIG nodes (dotted line) and the run times (solid line) for the example.
Here the width of the discrete time step varies between 400 ms and 50 ms. Our
analysis clearly shows that run times in the discrete time model largely depend
on the width of the time discretization step. At a time step of 400 ms the fixpoint
iteration took 5.4 CPU seconds for 9 steps, at 100 ms 763.8 CPU seconds for 33
steps, and at 50 ms 22497 CPU seconds for 65 steps.

This demonstrates a dilemma of the time discretized version: We have to keep
the time step small both to be sure not to miss relevant reachable states and
to be able to model the system correctly (of course, with discrete time steps
of 400 ms we are not able to model realistic controllers sampling every 100
ms). However, decreasing the time step too much may turn the model checking
problem intractable. In contrast, in our novel approach we do not work with time
discretizations, but we are able to compute continuous evolutions of variable
lengths in one operation based on flow extrapolation. Sequences of discrete steps
of the previous version [7] where no mode switches are triggered are collapsed
into a single symbolic substitution in this way. Note that in the example without
health monitoring system only five flow extrapolation steps are needed to reach
the fixpoint within a runtime of 27.7 s (whereas for the discrete time model with
a time step of 50 ms, e. g., the number of steps amounts to 65 with a run time
of 22497 s).

7 Conclusion

We consider the tight integration of LinAIGs and HySAT in backward reachabil-
ity analysis a core technology to address scalability of hybrid system verification
methods with large discrete state spaces, and have demonstrated the relevance
of the approach using a benchmark derived from an Airbus flap controller. The
redundancy elimination technique presented in Section 5 is of independent value
and could be integrated in other hybrid verification tools. Next imminent exten-
sions of our approach cover differential inclusions and continuous inputs. We will
experiment with incorporating orthogonal extensions to our approach such as ex-
ploiting robustness, over-approximation, and counterexample guided abstraction
refinement to address richer dynamics and achieve further scalability.

Exact State Set Representations 439

References

1. Agrawal, M., Thiagarajan, P.S.: Lazy rectangular hybrid automata. In: Alur, R.,
Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 1–15. Springer, Heidelberg
(2004)

2. Agrawal, M., Thiagarajan, P.S.: The discrete time behavior of lazy linear hybrid
automata. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 55–69.
Springer, Heidelberg (2005)

3. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin,
X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.
Theoretical Computer Science 138(1), 3–34 (1995)

4. Asarin, E., Dang, T., Girard, A.: Hybridization methods for the analysis of non-
linear systems. Acta Informatica 43(7), 451–476 (2007)

5. Asarin, E., Dang, T., Maler, O.: The d/dt tool for verification of the hybrid systems.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 365–370.
Springer, Heidelberg (2002)

6. Boigelot, B., Herbreteau, F.: The power of hybrid acceleration. In: Ball, T., Jones,
R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 438–451. Springer, Heidelberg (2006)

7. Damm, W., Disch, S., Hungar, H., Pang, J., Pigorsch, F., Scholl, C., Waldmann,
U., Wirtz, B.: Automatic verification of hybrid systems with large discrete state
space. In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS, vol. 4218, pp. 276–291.
Springer, Heidelberg (2006)

8. Damm, W., Pinto, G., Ratschan, S.: Guaranteed termination in the verification
of LTL properties of non-linear robust discrete time hybrid systems. Journal of
Foundations of Computer Science 18(1), 63–86 (2007)

9. Dolzmann, A.: Algorithmic Strategies for Applicable Real Qunantifier Elimination.
PhD thesis, Universität Passau (2000)

10. Fränzle, M., Herde, C.: HySAT: An efficient proof engine for bounded model check-
ing of hybrid systems. Formal Methods in System Design 30(3), 179–198 (2007)

11. Frehse, G.: Compositional Verification of Hybrid Systems using Simulation Rela-
tions. PhD thesis, Radboud Universiteit Nijmegen (2005)

12. Girard, A., Pappas, G.J.: Approximation metrics for discrete and continuous sys-
tems. IEEE Transactions on Automatic Control 52(5), 782–798 (2007)

13. H3 FOMC Team. The flap controller description.
http://www.avacs.org/Benchmarks/flapcontroller.pdf

14. Henzinger, T.A.: The theory of hybrid automata. In: 11th IEEE Symposium on
Logic in Computer Science, pp. 278–292. IEEE Press, Los Alamitos (1996)

15. Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: HyTech: A model checker for hybrid
systems. Software Tools for Technology Transfer 1(1–2), 110–122 (1997)

16. Hoare, C.A.R.: An axiomatic basis for computer programming. Communication of
the ACM 12, 576–583 (1969)

17. Jha, S., Brady, B., Seshia, S.: Symbolic reachability analysis of lazy linear hybrid
automata. Technical report, EECS Dept. UC Berkeley (2007)

18. Kuehlmann, A., Paruthi, V., Krohm, F., Ganai, M.K.: Robust boolean reasoning
for equivalence checking and functional property verification. IEEE Transactions
on Computer-Aided Design 21(12), 1377–1394 (2002)

19. Loos, R., Weispfenning, V.: Applying linear quantifier elimination. The Computer
Journal 36(5), 450–462 (1993)

20. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers, Dor-
drecht (1993)

http://www.avacs.org/Benchmarks/flapcontroller.pdf

440 W. Damm et al.

21. Mishchenko, A., Chatterjee, S., Jiang, R., Brayton, R.K.: FRAIGs: A unifying
representation for logic synthesis and verification. Technical report, EECS Dept.
UC Berkeley (2005)

22. Paruthi, V., Kuehlmann, A.: Equivalence checking combining a structural SAT-
solver, BDDs, and simulation. In: 18th IEEE Conference on Computer Design, pp.
459–464. IEEE Press, Los Alamitos (2000)

23. Pigorsch, F., Scholl, C., Disch, S.: Advanced unbounded model checking by using
AIGs, BDD sweeping and quantifier scheduling. In: 6th Conference on Formal
Methods in Computer Aided Design, pp. 89–96. IEEE Press, Los Alamitos (2006)

24. Platzer, A., Clarke, E.: The image computation problem in hybrid systems model
checking. In: 10th Workshop on Hybrid Systems: Computation and Control. LNCS,
vol. 4416, pp. 473–486. Springer, Heidelberg (2007)

25. Segelken, M.: Abstraction and counterexample-guided construction of ω-automata
for model checking of step-discrete linear hybrid models. In: Damm, W., Hermanns,
H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 433–448. Springer, Heidelberg (2007)

26. Silva, B.I., Richeson, K., Krogh, B.H., Chutinan, A.: Modeling and verification of
hybrid dynamical system using CheckMate. In: 4th Conference on Automation of
Mixed Processes (2000)

27. The VIS Group. VIS: A system for verification and synthesis. In: Alur, R., Hen-
zinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 428–432. Springer, Heidelberg
(1996)

28. Wang, F.: Symbolic parametric safety analysis of linear hybrid systems with BDD-
like data-structures. IEEE Transactions on Software Engineering 31(1), 38–52
(2005)

	Exact State Set Representations in the Verification of Linear Hybrid Systems with Large Discrete State Space
	Introduction
	System Model
	An Informal Description
	Formal Model

	Approach
	Flow Extrapolation
	Redundancy Elimination
	Experimental Results
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

